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ABSTRACT

Reticle critical dimension (CD) errors must be miided in order for photomask manufacturers to miggtt CD
uniformity (CDU) requirements. Determining the smeirof reticle CD errors and reducing or eliminatthgir CDU
contributions are some of the most relevant tag&m{ process engineers. The AMTC has applied ipd@hcomponent
analysis (PCA) to reticle resist CD measurementsriter to examine variations in the data. PCA pfedithe major

components of resist CD variation which were restahto reticle CQ signatures. The dominant comporé CD _ _ - {Deleted: variational

signature variation is very similar in shape andgnitmde between two different chemically amplifieszsist (CAR)

processes, most likely indicatirige variation source i@ common process or tool. CD variational signatfn@as PCA

were used as a basis for launching investigatiotes potential reticle CD error sources. PCA waghferr applied to
resist CD measurements from alternate process toalssist efforts in judging the effectivenessesiist CD signature
matching.
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1. INTRODUCTION

Reticle critical dimension uniformity (CDU) conties to be one of the most challenging specificatfonghotomask
manufacturers. Each new wafer technology node éédea CDU specifications tighter than its predeoesrequiring
the elimination or at least the minimization of teysatic reticle CD errors, such as center to edige, to side effects,
and localized CD deviations, often referred to egdold spots. For some CARs, the optimizationesfist bake and/or
develop processes have proven effective in lowertigle CDUY** Other methods such as feedback correction
strategies have also been employed when the saifrceticle CD error is unknowh.Despite these improvement

minimize their impacts. To this end, the AMTC exasd resist CDU signatures using PCA, a statistazinique for
revealing patterns in large data set§ While PCA examines only variations in a data ket resulting components of
this variation can be converted into reticle CDnsityre variations giving process engineers evidefigeotential CD
error sources. PCA enabled the identification asteyatic resist CD signature variations on twoedédht CAR systems
which were not evident by other examination methdftlse shape and magnitude of the dominant CD sigeat
variations were very similar between two differ€@#AR processes suggesting a common process orgdbkegpotential
error source. PCA was similarly applied to deteentihe effectiveness of resist CD signature matchsigg alternate
processes tools such as resist develop and poss@gbake (PEB). This report presents AMTC's ajailbn of PCA
to photomask resist CD signatures.

2. EXPERIMENTAL

The AMTC processes test reticles at regular interirmorder to gauge line performance and stabiltgmmercially
available 193nm phase shift blanks with widely upeditive and negative CARs (pCAR, nCAR) are writteith 50kV
e-beam (PG) lithography and processed identicallyctstomer reticles, except without the use of teed



compensation strategies. Each test reticle haslémtical dense feature layout (560nm pitch) distiéd uniformly over
~130mnf and 169 measurement points are collected with aSEB! after the resist develop and final etch preess
(i.e., resist and final CD). Resist CD measurementsitieel fwith a thin plate spline smoothing (TPS) inatin order to
obtain a resist CD signatul®The TPS fits from resist CD measurements of ~80reticles per CAR were examined
with PCA.

3. RESULTS

3.1 Resist CDU data for each CAR

For each CAR process there are multiple tools alkelat each unit process step however, only &isies processed
with the identical coat, PEB and resist develogstedthin each data set were selected for thisahRCA examination.
This choice was necessary because PCA will lateutlieed to compare resist CD signatures betwdesrrate and
primary procesgools. However, multiple PG and metrology tools evesed within each CAR data set and those were
not excluded in this analysis. Figure 1 shows lgistms of resist CDU for each CAR process with thmiber of test
reticles in each data set.
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Figure 1. Resist CDU of pCAR and nCAR test reticles
The average CDU level differs by ~1nm between theseCAR processes and the CDU variation aroundébpective

centers is 235%. Despite strict statistical process control (SBOkelevant process parameters such as resigntgs, - {Demed: 30

exposure dose, temperatures and flow rates, pCAR g&formance exhibits a 25% variation around armza4nm
whereas nCAR varies ~35% around a 3.2nm mean. Staheling the root cause of this variation is vital the
identification of process contributions to the @le€DU and its variations.

Figure 2 depicts average resist CD signaturesdtr AR processg obtained using point by point averages of TRS fit
for all test reticles and then normalizing by theam of each data set.
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The characteristic pCAR resist CD signature isratare(hot) to edge (cold), radial shape, while foanCAR is a top
(cold) to bottom (hot) orientation. However, vaidats from this average CDU signature were routirddgerved within

each CAR process. Consider Figure 3 which depastist CD signatures for three pCAR test reticlesc@ssed several
months apart, yet with identical PG and metrolagpid.
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Figure 3. Typical pCAR resist CD signatures.

All pCAR test reticles have radial resist CD sigmat yet to varying degrees. This variation waseroftbserved and

seemed random, making CD error source determirmpasblematic. Similar fluctuations in nCAR restiD signatures
were also observed as displayed in Figure 4.

)

Figure 4. Typical nCAR resist CD signatures.

As with pCAR the identical PG and metrology toolsres used for these three nCAR test reticles andegsotime
differed by several months. The left diagram ofufeg4 has essentially no top to bottom CD signatdrie it is very

pronounced in the right diagram, resulting in arpoc&€DU. Similar to pCAR, variations in nCAR top bottom resist
CD signatures were routinely observed yet withoknavn CD error source.



Since the CD measurements were obtained in resisiaich CAR, etch and subsequent processes coelihtinated as
potential error sources. Efforts thus focused emtfiend processes such as blank preparation, oesst& bake, PG,
PEB, resist develop, and resist metrology (scatietoy and CD SEM). When preliminary investigation® baking
temperatures, temperature uniformities and develfipa rates provided no clear indication of thesis¢ CD error
source, the AMTC turned to PCA in order to exanitreevariation in these two resist CDU data sets.

3.2 PCA on pCAR and nCAR resist CDU
The PCA technique for revealing patterns in largeadsets is detailed elsewh&fé.As the focus of this study is the

to computethe essential principle component elemette: correlation matrix (functiomor), eigenmodes (values &

vectors using functiogigen), normalized percentages for each variation madd,scores for each CAR data Sethis

PCAcomputatiorreturned a set of eigenmodes for each CAR dategsgt! to the number of variables (169 in this case,- {De|eted: in each data set

the number of resist CD measurements on eachdgsle) yet only the first few eigenmodes will bensidered here
because they account for the majority of data agations. Figure 5 shows a Pareto chart of ttst i® eigenmodes for
each CAR data set along with the associated ei¢igewand normalized cumulative percentages of emgnmode.
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Figure 5. First 10 eigenmodes with eigenvaluescamdulative percentages for pPCAR and nCAR resistd@fa sets.

The eigenvalue represents the weight of its coomding eigenmode within the data set. The resist SGpature
variation is not random in each CAR data set bezamne eigenvalues are much larger than others. dkarly
indicates a deterministic mechanism as the soureces@st CD variation. A flat distribution of eigealues, for example,
would indicate a dominance of stochastic variations

It is clear from Figure 5 the weight of nCAR eigestie 1 is more than for pCAR, while the inverserisetfor

eigenmode 2. However for both data sets, the dinst second eigenmodes account for >50% of thet @Bissignature
variation. Eigenmodes 3-10 collectively account<$80% of the data set variation and will not berexeed in detail in
this report. While 30% resist CD variation is novial, the AMTC elected to focus on the most imjpot, principal

components of each data set, and selected thomenedgles responsible for the highest impact on Gitian (.e., the

ones with the highest eigenvalues). We furtherrassuthe first 2 eigenmodes would be the easiese®® sources to
isolate and reduce or eliminate. Lastly, eigenmdiié® in each data set have similar eigenvaluesiwbould indicate
random variations as described above.

For every eigenmode and its associated eigenvedossore §) can be calculated by summing the products of the
variables and eigenvectors for that eigenmodeepitéd below:
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Where V, represents the normalized TPS fit value from re€iBt measurements ang;, the mode eigenvectors.

Principal component scores project the data orgoetbenvectors and assists efforts to describ@lifferent variation
modes?® Scores for eigenmodes 1 and 2 versus resist CBY4@ displayed graphically in Figures 6 and 7eeery
test reticle each CAR data set.
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Figure 6. pCAR resist CDU versus mode 1 & 2 scores.
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Figure 7. nCAR resist CDU versus mode 1 & 2 scores.

Using the functionsm andanova in R* to examine CDU as a function of mode 1 and 2 scsiraultaneously, results in
statistically significant models for both CAR preses as detailed in Table 1.

Table 1. Multivariate model information for AR and nCAR data sets.

Data Set| R? | Mode 1 p-value| Mode 2 p-value
pCAR | 0.7834 6 x 16° 2 x10%

nCAR | 0.7568 3x 1&° 9 x 10%

These CDU models are shown graphically in Figufer®oth CAR processes.



CDU (with mode 1 contributing slightly more than deo2 to nCAR CDU). Such trend information is uséfydrocess
parameters can be found that relate to these séoresach CAR process. If obtained, we could themtlthese
contributions to resist CD variation by an appragicontrol of the CAR process parameter.

Figures 6-8 also illustrate the limitations of thassical method of examining onlg 8o characterize resist CDU
quality. Resist 8 is a condensation of a complex process of varlat contribute collectively to CDU and is
inadequate to completely describe the uniformitsnifarly, visual examinations of resist CD signa&sialso fail to
provide valuable trend information. Applying PCAWever to a large population of reticles, each Wit
measurement points, yields much more informatian plotentially leads to resist CDU improvements.

3.3 PCA’s relation to CDU signatures

Transforming PCA variation modes into reticle CDriaional signatures requires rescaling the modés whe
following expressiort?

U= A @

Where /1: represents the rescaled mode eigenvegtor.the original eigenvector for each varialjeand A is the

corresponding mode eigenvalue. Performing this apsr followed by plotting the rescaled mode eigaors using
the resist CD measurement coordinates provideSder€D signature variation for each mode. Figdighows rescaled
mode 1 and 2 eigenvectors for both CAR processes.
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Figure 9. CD variational signatures obtained froodes 1 and 2 for nCAR

Both CAR processes show a very similar top to ottesist CD variation for mode 1, both in shape and

process or tool to both CAR processes.

Mode 2 variations on the other hand are very dfiebetween these two CAR processes, with pCAR
displaying a center cold, radial type variationjle/that for n"CAR is also radial but center hotwéin obvious
side to side CD impact (left hot, right cold). Tinede 2 sign for pCAR (center cold radial) confliatish the
average pCAR signature (center hot radial) agastdunegative mode 2 score results for pCAR. This
difference in mode ZD variatiors could mean the mechanism responsible is somethiigie to each CAR
process.

Although mode 1 for pCAR is the dominant CD vapaitiit is not visible in the average resist CD aimime
Conversely mode 2 for pCAR is very similar to therge resist CD signature while nCAR’s mode ke
its average signature. The correlation between 3y and the two dominant modes of variation depiated
Figure 8 can be understood from the shapes of madégure 9. For pCAR adding or subtracting mode 2
is true for the relation of mode 1 to nCAR CDW)3also shown iniFiigqueié, asits ébo]rﬁﬁact ighediy
larger than mode 2 .We thus stand to gain the ggeahprovement in CDU and CDU stability by workitag
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eliminate mode 2 variations from pCAR and mode ratimns from nCAR. Eliminating or simply reducing
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With this information the AMTC began investigatidnsan attempt to isolate the error source(s) nesibte for
these CD signature variations. Initial efforts feed on processes where multiple tools were usddaPG
and metrology, in an attempt to uncover potential mismatches. To date, no strong correlationgwer
observed between these tools yet this investigatoinues and results will be presented in a ¥olip report.

From the PCA examination of potential tool mismasithe AMTC found another useful application @ th

- ‘[Deleted: d

tools.

3.4 PCA’s utility in process matching determinations

PCA was similarly applied to determine the effeetigss of resist CD signature matching using altelrR&B
and resist develop tools. Another, smaller sehefsame test reticles described in Section 3.1 preessed
on alternate tools and companeging PCA scoreto the set of reticles that all utilized the prijmarocess
tools. Eigenmode results from this PCA applicatos very similar to those reported above, both in
eigenvalues and cumulative percentages of each,rimatieating no new resist CD variations were idtroed
by these alternate process tools. As previouslly, scores from the first two eigenmodes are conmpagainst

resist CDU and Figure 10 shows this comparisop@AR where several reticlggere processed aiternate - ‘[Deleted: experienced

PEB and resist develop tools.
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Figure 10. pCAR modes 1 & 2 scores versus CDU;;: [3feticles (labeled A, B, and C) processed oaltinate PEB tool;
Right: 6 reticles (labeled 1-6) processed on &errdte resist develop tool.

In the case ofraalternatgCAR resist develop tool, all reticles display msoand CDU very similar to those of - {Demed: second

. i . i ! T o - - - 1 Deleted: d
pCAR PEB tool, reticle “A” is similar to the primaPEB tool while reticles “B” and “C” have outliscores in { ee secon

modes 1 and 2, respectively. Reticle “A” is thussidered to match resist CDU from the primary P&& as
well as reticle “B” since mode 1 CD variations wst®wn previously to have little CDU impact for pRAnd
also because reticle “B” has a CDU @alue near the average for the entire data setld mode 2 score for
reticle “C” warrants further study since this whe tlominant CD variation mode for pCAR and becdtigere
6 showed low mode 2 scores correlate with highast€DU. However reticle “C” has quite a good CB@
value and it is thus accepted as part of the ma@P ariation with the alternate PEB tool.



A close examination of Figure 10 reveals the saeratobserved in Figus& and 8 CDU correlates to pCAR
mode 2 scores. In this case however, mode 2 shaxesthe opposite sign of those in Figure 6 becthessign
of the mode 2 eigenvectors has changed. PCA sigicehare not unique, causing scores in this cakawe
the opposite sign as those in Figure 6.

develop tool were used for several test reticles.
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Figure 11. nCAR scores for modes 1-3; Left: 3 teti¢labeled A, B, and C) processed on an altefP&f# tool; Right: 5
reticles (labeled 1-5) processed on an alternatstréevelop tool.

In the nCAR case, all reticles processed on tleralte PEB and resist develop tools have score€bhd
similar to those on the primary tool, indicatinguatable resist CD match.

Obvious in these PCA comparisons are score and Qidligrs for test reticles processed on the printaoys
however, it was AMTC's intent to avoid, if possipthe introduction of additional resist CD variatifsom
alternate process tools. It shall be pointed astRICA score and CDU comparison was used to juelgjstrCD
determine alternate tool capabilities. The AMTCrfdlPCA to be a more rigorous CD uniformity checkrth
simply examining & values or visually comparing resist CD signatuheshe 4 examinations above, PCA
shows there are no new dominant modes of resistaiation introduced by the alternate process tautch
is an important result when viewed in terms of alldme CDU and CDU stability.

4. CONCLUSIONS

PCA was applied to different sets of CAR, 50kV esg, photomask resist CD measurements in ordestesrdine the
data set variations. At least one mode of variaitioeach CAR data set related to the classiaalva@ue for reticle CD
uniformity. Modes of variation from each CAR datet svere converted into resist CD signature vanetiand the

variational signatures derived from PCA were used &asis for launching investigations into potentticle CD error
sources. PCA was further applied to resist CD gigea derived from alternate PEB and resist dev&dogs, which
assisted efforts in judging the effectiveness aisteCD signature matching from alternate procesdstand also
demonstrated no new dominant CD variation modeg weroduced by alternate process tools.
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